Journal of Organometallic Chemistry, 288 (1985) 197-200 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

REACTION OF C_{α} - C_{β} -CLEAVAGE IN THE SERIES OF MONOSUBSTITUTED β -DICARBONYL COMPOUNDS

V.N. POSTNOV *, Yu.N. POLIVIN, V.A. SAZONOVA and S.N. GRUKHANOVA

Moscow State University, Chemistry Department, Moscow (U.S.S.R.) (Received November 21st, 1984)

Summary

Interaction of PhMgBr with α -monosubstituted β -dicarbonyl compounds, β -diketones, β -ketonic esters and β -diesters, is studied. A new reaction route, $C_{\alpha}-C_{\beta}$ -cleavage, the course of which is determined by the pK_{R^+} value of the α -substituent and the pK_{α} value of the corresponding proton analog of the β -substituent is found.

Introduction of the ferrocenyl substituent into a molecule of an organic compound frequently has a significant effect on the reaction capability of the latter. The recently-discovered reaction route, $C_{\alpha}-C_{\beta}$ -cleavage, in the reaction of some ferrocene-containing β -diketones with Grignard reagents [1] may be accounted for by a specific effect of the ferrocenyl substituent. The readiness of the $C_{\alpha}-C_{\beta}$ -cleavage is related to the ease of α -ferrocenylcarbocation formation [2] in this reaction. Yet, in the case of α -monosubstituted acetoacetic and malonic esters the effect of the ferrocenyl group is insufficient and $C_{\alpha}-C_{\beta}$ -cleavage in the reaction with PhMgBr is not characteristic [3].

In this connection we have studied the interaction of PhMgBr with a number of α -monosubstituted β -dicarbonyl compounds. Some spectral indices of the initial β -dicarbonyl compounds I-XI are given in Table 1.

Formation \mathbb{R}^1 -Ph (a) is evidence of C_{α} - C_{β} -cleavage. The yield of the initial compound with excess PhMgBr indicates the enolization reaction proceeding under these conditions (b). Besides this, addition of a carbonyl group with subsequent formation of a ketonic cleavage product takes place (c).

The experimental data are given in Table 2, the total yield by the three paths mentioned is 80%.

As can be seen from Table 2, the dimethylamino group, a strong stabilizer of the carbocation centre of the + R type in *para*-position on the phenyl ring, leads to fragmentation of compounds I-III irrespective of the β -dicarbonyl part of the substrates. Products of enolization (b) and ketonic cleavage (c) were found in the reaction mixtures (in the case of I).

Benzhydryl derivatives IV-VI do not undergo cleavage under the action of PhMgBr. After decomposition of the reaction mixture by water, only initial com-

0022-328X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

TABLE 1

SPECTRAL DATA FOR COMPOUNDS I-XI.

 $R'-CH\begin{pmatrix}COR^{2} & (1) PhMgBr\\COR^{3} & (2) H_{2}O & R'-Ph + initial + R'-CH_{2}-COR^{2}\\(a) & (b) & (c) & (R^{2}=Alk, Ar) \end{pmatrix}$

No.	Compound "		¹ H NMR spectra, δ (ppm)				IR spectra	
			H _A	Н _в	COCH3	CH3	ν(CO)	(cm ⁻¹)
I	Fc CH−CH COCH₃ M	[4]	4.31	4.31	1.93 2.00		1690	1710
11	FC CH-CH COOCH2CH3	[4]	4.30		1.93 2.00	0.97 1.20	1720	1750
ш	FC COOCH ₂ CH ₃ MCH-CH COOCH ₂ CH ₃		4.36 ^b			0.98 1.16	1730	1750
IV	Ph CH-CH COPh	[5]	5.21	6.40			1710	1670
v	Ph CH-CH COOCH ₂ CH ₃	[6]	4.77 *	4.50	2.04	1.00	1730	1765
	Ph_CH-CH_COOCH2CH3 Ph_CH-CH_COOCH2CH3			4.36		0.95	1730	1750
VII	M CH-CH COCH3	[8]	4.62	4.62	2.00		1700	1740
VIIa	M CH-CH COPh		5.24	6.35			1695	1670
VIII	м_сн-сн_сосн ₃ м_сн-сн_соосн ₂ сн ₃	[8]	4.62	4.40	2.10	1.05	1705	1725
IX	M CH-CH COOCH ₂ CH ₃	[8]	4.60 "	4.20		1.03	1740	1755
	Fc-CH2CH COPh		5.30	3.22				
XI	Fc CHCH₂COCH₃ M	[4]	4.20	3.05	2.00			

^a Fc = $C_{10}H_9Fe$; M = $p-C_6H_4N(CH_3)_2$; ¹H NMR spectra in CCl₄, VIIa in CH₂Cl₂; internal standard, TMS. IR spectra in Nujol, II, V, VI, in CCl₄; IV, in CH₂Cl₂. ^bAssigned by deuteration.

Compound	Yield (%)					
	a	b	c			
I	75	traces	traces			
II	73	traces	_			
III	11	. 81	-			
IV	0	traces	79			
v	0	73	-			
VI	0	87	_			

TABLE 2

pounds (b) and products of ketonic cleavage (c) (for IV), were obtained.

While in the cases of I-VI formation of R^1 -Ph (a) (or its absence) is the direct indication of C_{α} - C_{β} -cleavage (or its absence), in the case of VII-IX the evidence of C_{α} - C_{β} -bond fragmentation is shown by the formation of a carbocation M_2CH^+ (λ_{max} 611 nm). The reaction capability of such a carbocation upon interaction with organomagnesium compounds decreases [9].

The special characteristics of the behaviour of α -monosubstituted β -dicarbonyl compounds toward Grignard reagents must be considered as a particular case of heterolysis of C_{α} - C_{β} bond: $R_{2}^{\alpha}CH^{-\beta}CHX_{2}$.

The sufficiently acceptive nature of X_2 leads to polarization of $C_{\alpha}-C_{\beta}$ bonds. The degree of polarization and the stability of the enolate formed correlate to the value of pK_a of the corresponding proton analog HCHX₂. On the other hand, the ability of R_2 CH group to form stable carbocations corresponds to the value of pK_{R^+} , where $R^+ = R_2$ CH⁺.

In the examples discussed, pK_a values of unsubstituted β -dicarbonyl compounds are 10^{-9} , 10^{-10} and 10^{-14} for acetylacetone, acetoacetic and malonic esters, respectively [10]. The pK_{R^+} values vary from -13.6 for the benzhydryl carbocation to +5.61 for its bis(*p*-dimethylamino)-substituted form [11]. A similar effect of the α - and β -moieties is the possibility of $C_{\alpha}-C_{\beta}$ -cleavage under the action of various reagents.

The $C_{\alpha}-C_{\beta}$ -cleavage of the ferrocenyl-containing α -monosubstituted β -dicarbonyl compounds, β -diketones, β -ketonic esters and β -diesters, under the action of CF₃COOH or Mg and Al halides already noted [3] is consistent with this simplified scheme. Protonation of a carbonyl group as well as coordination * (or chelation) of MgBr₂ or AlCl₃ leads to $C_{\alpha}-C_{\beta}$ -fragmentation.

A weaker Lewis acid, MgBr₂, cleaves β -diketones and β -ketonic esters while Grignard reagents cleave only β -diketones [3]. Increase in the pK_{α} value results in the possibility of C_{α}-C_{β}-cleavage even under the action of weak Lewis acids, as in the case of cleavage of bis(*p*-dimethylaminophenyl)-substituted β -dicarbonyl compounds under the action of acetic acid [8]. Cleavage of tris(*p*-dimethylaminophenyl)methylnitromethane as well as tris(*p*-dimethylaminophenyl)propionic aldehyde and its vinyl analogue under the action of carboxylic acids [12] may occur accordingly. On the other hand, rearrangement from Fc(Ph)CH-substituted dibenzoylmethane to FcCH₂-substituted X, the pK_{R+} value for which is in the order of 1.5 lower than that for Fc(Ph)CH [13] leads to the situation where X does not undergo fragmentation neither under the action of PhMgBr, nor with MgBr₂ in ether.

Considering the duality of Grignard reagent the $C_{\alpha}-C_{\beta}$ -cleavage under the action of RMgX on β -dicarbonyl compounds should be referred to as an internally catalysed electrophilic reaction.

Experimental.

Compounds III and VIIa were obtained in yields of 61% and 82% respectively by a literature method [2].

Ferrocenyl-p-dimethylaminophenyl methyl acetone also undergoes C_α-C_β cleavage under the action of MgBr₂. After decomposition of the reaction mixture by PhMgBr and then by water ferrocenyl-p-dimethylaminodiphenylmethane has been detected in the reaction products by TLC analysis.

III; m.p. 75–76°C (heptane). Found: C, 62.25; H, 6.58; N, 2.93; Fe, 11.46. $C_{26}H_{31}O_4NFe$ calcd.: C, 62.42; H, 6.55; N, 2.93; Fe, 11.70%.

VIIa; m.p. 215°C (heptane/benzene). Found: C, 80.40; H, 6.45. $C_{32}H_{32}O_2N_2$ calcd.: C, 80.64; H, 6.77%.

X: obtained by boiling an equimolar mixture of dibenzoylmethane and $[FcCH_2N(CH_3)_3]^+I$ for 1 h in dimethylformamide. Purification performed by thin-layer chromatography. Yield 92%; m.p. 139°C (heptane/benzene). Found: C, 74.19; H, 5.40; Fe, 13.33. $C_{26}H_{22}O_2$ Fe calcd.: C, 73.94; H, 5.25; Fe, 13.22%.

Interaction of I-VI, X, XI with large excesses of PhMgBr was for 15 min in ether/benzene solution, VII-IX in tetrahydrofuran. Separation of the reaction products after decomposition of the reaction mixture by water was performed by thin-layer chromatography on SiO₂ (5/40 mk) with benzene.

References

- 1 A.N. Nesmeyanov, A.N. Pushin and V.A. Sazonova, Dokl. Akad. Nauk SSSR, 252 (1980) 364.
- 2 V.N. Postnov, Yu.N. Polivin and V.A. Sazonova, Dokl. Akad. Nauk SSSR, 271 (1983) 1399.
- 3 V.N. Postnov, Yu.N. Polivin and V.A. Sazonova, Dokl. Akad. Nauk SSSR, 271 (1983) 133.
- 4 A.N. Nesmeyanov, V.A. Sazonova and G.I. Zudkova, Dokl. Akad. Nauk SSSR, 176 (1967) 1317.
- 5 E.P. Kohler and M. Tishler, J. Am. Chem. Soc., 54 (1932) 1594.
- 6 G. Handerson and J. Parker, J. Chem. Soc., 71 (1895) 676.
- 7 E.P. Kohler, Amer.Chem. Jour., 34 (1905) 134.
- 8 M.R. Fosse, Ann. Chem., [8], 18 (1909) 400.
- 9 M. Gomberg and O. Kamm, J. Am. Chem. Soc. 39 (1917) 2009.
- 10 R.G. Pearson and R.L. Dillon, J. Am. Chem. Soc., 75 (1953) 2439.
- 11 N.C. Deno and A. Schriesheim, J. Am. Chem. Soc., 77 (1955) 3051.
- 12 A.N. Nesmeyanov, E.G. Perevalova, N.A. Vol'kenau and I.F. Shalavina, Izv. Akad. Nauk SSSR, Ser. Khim., (1951) 692
- 13 N.C. Deno, C.U.Pittman and M.J. Wisotsky, J. Amer. Chem. Soc., 86 (1964) 4370.